نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد برنامه‌ریزی محیط‌زیست، دانشکده محیط‌زیست. دانشگاه تهران

2 دانشیار گروه برنامه‌ریزی و مدیریت محیط‌زیست، دانشکده محیط‌زیست. دانشگاه تهران

چکیده

امروزه مدیریت رواناب‌های سطحی و استفادة مجدد از پساب، از دغدغه‌های اصلی مدیران و طراحان شهری است. رویکرد LID-BMP به‌دنبال توسعة دوست‌دار طبیعت برای مدیریت آب‌های سطحی است. به‌کارگیری این روش‌ها علاوه‌بر امکان استفادة مجدد از رواناب در مصارف غیرآشامیدنی نظیر مصارف کشاورزی و صنعتی، آلودگی زیست‌محیطی واردشده به خاک و منابع آب زیرزمینی را نیز کاهش خواهد داد. استفادة مجدد از رواناب‌ها و تلاش به‌منظور بازچرخانی آب جزء اهداف توسعة شهر تهران محسوب می‌شود. در این تحقیق ابتدا حجم رواناب و مناطق مستعد سیل‌خیزی در مقیاس کلان برای منطقة یک شهرداری تهران به روش شمارة منحنی و با توجه به ‌کاربری زمین تعیین شد. سپس با استفاده از خطوط توپوگرافی، رودخانه‌های منطقه، حجم رواناب و گره‌های تجمعی، حوضة آبخیز رود دره دربند محصور در منطقة یک تهران به‌عنوان مقیاس خرد مشخص می‌شود. درنهایت با استفاده از منطق فازی و تحلیل سلسله‌مراتبی در محیط نرم‌افزار GIS، مکان‌های بهینه برای سیستم‌های سلول ماند بیولوژیکی تعیین شده و با درنظرگرفتن کانال‌های جمع‌آوری رواناب موجود، در‌مجموع 23/12319 مترمربع برای تعبیة این سیستم‌ها جانمایی و پیشنهاد می‌شود. نتایج تحلیل حساسیت به روش حذف پارامتر نشان داد که پارامتر کاربری اراضی، بیشترین اهمیت و تأثیر را در انتخاب مکان‌های مناسب برای تعبیه و استقرار این سیستم‌‌ها دارد؛ بنابراین، توجه ویژه به‌کاربری زمین در مدیریت رواناب‌ مناطق توسعه‌یافتة شهری ضروری و مورد انتظار است.

کلیدواژه‌ها

عنوان مقاله [English]

Locating Bioretention Cells in Urban Run off Management Using Fuzzy Logic and Analytic Hierarchy Process (Case study: District No. 1 of Tehran Municipality)

نویسندگان [English]

  • Mahdiye Saadat Foomani 1
  • Dr.Bahram Mohamadi 2
  • Dr.Esmaeil Salehi 2

چکیده [English]

Nowadays, management of surface runoff and reuse of wastewater are among the main concerns of urban managers and designers. The LID-BMP approach seeks environment-friendly development in runoff management. The application of these methods, in addition to the possibility of reuse of runoff in non potable uses  such as agricultural and industrial uses, will also reduce the environmental contamination of the soil and groundwater resources.Reuse of runoffs  and attempts for water recycling are considered among the development goals of Tehran. This research first used the runoff curve number (CN) method to determine the volume of runoff and flood-prone areas considering the land uses at a macro scale for District 1 of Tehran Municipality. By using topographic contour lines, rivers in the district, the volume of runoff and cumulative nodes, the Watershed of the Darband River bordered in District 1 of Tehran was determined at the micro scale. Finally, fuzzy logic and the analytic hierarchy process in the GIS software environment considering drainage networks were used to find the optimum locations for the biological retention cell systems. In all, 12319.23 square meters are suggested for embedding these systems. Moreover, results of the sensitivity analysis in exclusion factor method revealed that the land use factor has high priority and impact in selecting suitable locations to embed and establish this system. So especial considering on land uses is vital and expected in urban runoff management.             

کلیدواژه‌ها [English]

  • Urban runoff
  • New Management Practice
  • Fuzzy logic
  • Bioretention cell

فلاحی‌زرندی، اصغر. . "انتخاب ترکیب بهینة بهترین راهکارهای مدیریتی (BMP ها) با در‌نظر گرفتن ملاحظات اقتصادی در بهبود کیفیت رواناب سطحی شهر تهران". پایان‌نامة کارشناسی ارشد. (1392). دانشگاه خوارزمی.

کاویان‌پور، محمدرضا؛ مقیمی، ابوالفضل ؛ شریفی، سحر.. "تعیین اثرات کاربرد روش توسعة کم‌اثر (LID) در کاهش سیلاب‌‌های شهری و شبکة جمع‌‌‌آوری آب‌‌های سطحی شهر تهران". اولین کنفرانس ملی مدیریت سیلاب‌های شهری. (1389) تهران. صص: 12-11.

محمودی، بهروز؛ سرلک، مهدی. . "برآورد عوامل مؤثر بر عرضه و تقاضای آب و جایگاه ایران در منطقه از‌نظرِ توسعة پایدار". مرکز تحقیقات استراتژیک مجمع تشخیص مصلحت نظام. گزارش 50-87-2-04(1387).

محمودیان، علی اکبر.. "نگاهی به تهران از آغاز تا کنون". تهران: (1387). مؤسسة جغرافیایی و کارتوگرافی گیتاشناسی.

 

Barrett, M. E. (2005). Performance comparison of structural stormwater best management practices. Water Environment Research, 77(1), 78-86.

Bertolini, M; Braglia, M; Carmignani, G. (2006). Application of the AHP methodology in making a proposal for apublic work contract. International Journal of Project Management, 24(5), 422-430.

Bloorchian, A. A; Ahiablame, L; Osouli, A; Zhou, J. (2016). Modeling BMP and Vegetative Cover Performance for Highway Stormwater Runoff Reduction. Procedia Engineering, 145, 274-280.

Braud, I; Fletcher, T; Andrieu, H. (2013). Hydrology of peri-urban catchments: Processes and modelling. Journal of Hydrology, 485, p. 1-p. 4.

Çimren, E; Çatay, B; Budak, E. (2007). Development of a machine tool selection systemusing AHP. The International Journal of Advanced Manufacturing Technology, 35(3-4), 363-376.

EPA, U. S. E. P. A. (2007). Nonpoint sources pollution Control Program. Office of Water, 841-F-94-005.

Hill, M. J; Braaten, R; Veitch, S. M; Lees, B. G.; Sharma, S. (2005). Multi-criteria decision analysis in spatial decision support: the ASSESS analytic hierarchy process and the role of quantitative methods and spatially explicit analysis. Environmental Modelling & Software, 20(7), 955-976.

Inamdar, P; Cook, S; Sharma, A; Corby, N; O'Connor, J; Perera, B. (2013). A GIS based screening tool for locating and ranking of suitable stormwater harvesting sites in urban areas. Journal of environmental management, 128, 363-370.

Jia, H; Lu, Y; Shaw, L. Y; Chen, Y. (2012). Planning of LID–BMPs for urban runoff control: The case of Beijing Olympic Village. Separation and Purification Technology, 84, 112-119.

Jia, H; Yao, H; Tang, Y; Shaw, L. Y; Field, R; Tafuri, A. N. (2015). LID-BMPs planning for urban runoff control and the case study in China. Journal of environmental management, 149, 65-76.

Kahraman, C. (2008). Fuzzy multi-criteria decision making: theory and applications with recent developments (Vol. 16): Springer Science & Business Media.

Ki, S. J; Ray, C. (2014). Using fuzzy logic analysis for siting decisions of infiltration trenches for highway runoff control. Science of The Total Environment, 493, 44-53.

Kirk, B. (2006). Suburban stormwater management: an environmental life-cycleapproach. The University of Vermont.

Kumar, P. S; Babu, M. R. K; Praveen, T. (2010). Analysis of the Runoff for Watershed Using SCS-CN Method and Geographic Information Systems. Analysis, 2(8), 3947-3654.

Lee, J. G; Selvakumar, A; Alvi, K; Riverson, J; Zhen, J. X; Shoemaker, L; Lai, F.-h. (2012). A watershed-scale design optimization model for stormwater best management practices. Environmental Modelling & Software, 37, 6-18.

Liu, Y; Ahiablame, L. M; Bralts, V. F; Engel, B. A. (2015. (Enhancing a rainfall-runoff model to assess the impacts of BMPs and LID practices on storm runoff. Journal of environmental management, 147, 12-23.

Lodwick, W. A; Monson, W; Svoboda, L. (1990). Attribute error and sensitivity analysis of map operations in geographical informations systems: suitability analysis. International Journal of Geographical Information System, 4(4), 413-428.

Martin-Mikle, C. J; de Beurs, K. M; Julian, J. P; Mayer, P. M. (2015). Identifying priority sites for low impact development (LID) in a mixed-use watershed. Landscape and Urban Planning, 140, 29-41.

McCuen, R. H. (1989). Hydrologic analysis and design: Prentice-Hall Englewood Cliffs, NJ.

Mejía, A. I; Moglen, G. E. (2010). Spatial distribution of imperviousness and the space‐time variability of rainfall, runoff generation, and routing. Water Resources Research, 46(7).

Mendel, J. M. (1995). Fuzzy logic systems for engineering: a tutorial. Proceedings of the IEEE, 83(3), 345-377.

Mishra, S; Tyagi, J; Singh, V; Singh, R. (2006). SCS-CN-based modeling of sediment yield. Journal of Hydrology, 324(1), 301-322.

Park, D; Kang, H; Jung, S. H; Roesner, L. A. (2015). Reliability analysis for evaluation of factors affecting pollutant load reduction in urban stormwater BMP systems. Environmental Modelling & Software, 74, 130-139 .

Symbiont, A. (2006). Storm Water Best Management Practices Technical Manual.

Tanski, J. (2007). Stormwater runoff. Best management practices for marinas. A guide for operators.

Troidl, J. (2007). A Storm Water Management Model to Predict Runoff and Streamflow in the Pennichuck Brook Watershed.

Urban Drainage and Flood Control District, W. R. (2010). Urban Storm Drainage Criteria Manual Best Management Practices. 3.

Vaidya, O. S.; Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European journal of operational research, 169(1), 1-29.

Vereecken, H; Kemna, A; Münch, H. M; Tillmann, A; Verweerd, A. (2005). Aquifer characterization by geophysical methods. Encyclopedia of Hydrological Sciences.

Water and Sewer Commission, B. (2013). Stormwater Best Management Practices: Guidance Document.

Yen, J. (1999). Fuzzy logic-a modern perspective. Knowledge and Data Engineering, IEEE Transactions on, 11(1), 153-165. .