Cai, W., Zhao, S., Zhang, Z., Peng, F., & Xu, J. (2018). Comparison of different crop residue indices for estimating crop residue cover using field observation data. In Proceedings of the 2018 7th International Conference on Agro-geoinformatics.
https://doi.org/10.1109/Agro-Geoinformatics.2018.8476112
Changyue Hu, Wu Wu, Xuexia Zhou, Zhijie Wang (2023). Spatiotemporal Changes in Landscape Patterns in Karst Mountainous Regions Based on the Optimal Landscape Scale: A Case Study of Guiyang City in Guizhou Province, China. Ecological Indicators
, 150, (2023).
https://doi.org/10.1016/j.ecolind.2023.110211
eballos-Silva, A., & Lopez-Blanco, J. (2003). Delineation of Suitable Areas for Crops Using a Multi-Criteria Evaluation Approach and Land Use/Cover Mapping: A Case Study in Central Mexico. Agricultural Systems
, 77, 117-136.
https://doi.org/10.1016/S0308-521X(02)00103-8
Fakour, A,. Joybari, Sh. Mikaeeli, A. Saleh Nasab, Abu Talib. (2015). Quantitative status of Mashhad's tree green space and investigating the possibility of its development with GIS and WLS methods. Wood and Forest Science and Technology Research Journal.
(In Persian)https://civilica.com/doc/953454/
Frohn, R. C., & Hao, Y. (2006). Landscape Metric Performance in Analyzing Two Decades of Deforestation in the Amazon Basin of Rondonia, Brazil. Remote Sensing of Environment
, 100, 237-251.
https://doi.org/10.1016/j.rse.2005.10.026
Ghasemi Khozani, M., Sarafi, M., Momeni, M. (1387). The structure and function of religious-cultural tourism and the necessity of integrated management in the metropolis of Mashhad, Journal of Geography and Development 6(11), 13-38.
(In Persian)https://gdij.usb.ac.ir/article_1255.html
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment
, 202, 18-27.
https://doi.org/10.1016/j.rse.2017.06.031
Hashim, H., Abd Latif, Z., & Adnan, N. A. (2019). Urban vegetation classification with NDVI threshold value method with very high resolution (VHR) Pleiades imagery.
ISPRS - International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences
, XLII-4/W16, 237-240.
http://dx.doi.org/10.5194/isprs-archives-XLII-4-W16-237-2019
Hatami, M,. Sotoudeh, A., Mokhtari, M., Kiyani, B. (2013). Evaluation of composition and spatial distribution of green space spots in Mashhad city using land surface measurements. The sixth urban planning and management conference.
(In Persian)https://civilica.com/doc/349448 /
Huang, S., Tang, L., Hupy, J. P., et al. (2021). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing.
J. For. Res. 32, 1–6.
https://doi.org/10.1007/s11676-020-01155-1
Immitzer, M., Vuolo, F., & Atzberger, C. (2016). First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sensing
, 8, 166.
https://doi.org/10.3390/rs8030166
Jridi, L., Kalaitzidis, C., & Alexakis, D. D. (2023). Quantitative Landscape Analysis Using Earth-Observation Data: An Example from Chania, Crete, Greece.
Land, 12(5), 999.
https://doi.org/10.3390/land12050999
Lu, J., Li, B., Li, H., & Al-Barakani, A. (2021). Expansion of city scale, traffic modes, traffic congestion, and air pollution.
Cities, 108, 102974.
https://doi.org/10.1016/j.cities.2020.102974
McGarigal, K., & Marks, B. (1995).
Fragstats: Spatial Pattern Analysis Program for Quantifying Landscape Structure. Reference Manual. For. Sci. Dep. Oregon State University, Corvallis, Oregon.
https://doi.org/10.2737/PNW-GTR-351
Novelli, A., Aguilar, M. A., Nemmaoui, A., Aguilar, F. J., & Tarantino, E. (2016). Performance Evaluation of Object-Based Greenhouse Detection from Sentinel-2 MSI and Landsat 8 OLI Data: A Case Study from Almería (Spain). International Journal of Applied Earth Observation and Geoinformation
, 52, 403-411.
https://doi.org/10.1016/j.jag.2016.07.011
Phan, T. N., Kuch, V., & Lehnert, L. W. (2020). Land Cover Classification using Google Earth Engine and Random Forest Classifier—The Role of Image Composition. Remote Sensing
, 12(15), 2411.
https://doi.org/10.3390/rs12152411
Razzagian, F., Aghajani, H. (2023). An analysis of the deficiencies and spatial distribution of urban gardens in Mashhad. Arid Geographical Studies 14(51): 114-135.
(In Persian)https://civilica.com/doc/1749413/
Su, Y., Guo, Q., Fry, D. L., Collins, B. M., Kelly, M., Flanagan, J. P., & Battles, J. J. (2016). A Vegetation Mapping Strategy for Conifer Forests by Combining Airborne LiDAR Data and Aerial Imagery. Canadian Journal of Remote Sensing/Journal Canadien de Télédétection
, 42(1), 1-15.
https://doi.org/10.1080/07038992.2016.1131114
Suleimannejad, L; Feghhi, J; Makhdoom, M; Nemiranian, M (2014).; Jahangir Fakhi; Majid Makhdoom; Manouchehr Nemiranian (2014). (2014). Investigating the spatial pattern of parks in twenty-two districts of Tehran by land surface measurements, Environmental Research 6, 123-134.
(In Persian)https://civilica.com/doc/2059499/
Tahmasebi Moghadam, H., Zanganeh, M., Heydari, M., Imani, M. (2019). Explaining the pattern of spatial distribution of inner-city parks with the approach of spatial justice, study area: Sabzevar city. Scientific Quarterly of Urban Ecology Research 12, 31-48.
(In Persian)https://civilica.com/doc/1598861/
Yu, Z., Wang, Y., Deng, J., Shen, Z., Wang, K., Zhu, J., & Gan, M. (2017). Dynamics of Hierarchical Urban Green Space Patches and Implications for Management Policy. Sensors,
17(6), 1304.
https://doi.org/10.3390/s17061304